oxygens enclosing a layer of iodine, parallel to the (010) plane. The H₅IO₆ structure is found by displacement of the atoms and a slight deformation of the ideal unit cell as shown in Figs. 1 and 2.

In the ideal structure half of the oxygens are in the position y=1/16 and the other half in the position y=3/16. The iodine atoms lie in the plane y=1/8. In the actual structure these values are:

```
\begin{array}{lll} \text{I:} & y = 1/8 - 0.004\,; & \text{O}_1\colon\ y = 1/16 - 0.012\,;\\ \text{O}_2\colon\ y = 1/16 + 0.019\,; & \text{O}_3\colon\ y = 1/16 + 0.001\,;\\ \text{O}_4\colon\ y = 3/16 + 0.008\,; & \text{O}_5\colon\ y = 3/16 - 0.020\,;\\ \text{O}_6\colon\ y = 3/16 - 0.006\,. \end{array}
```

The unit cell contains four of these double layers of oxygen perpendicular to the b-axis, connected by the

Table 2

$$\begin{array}{l} {\rm O}_{1}(x,\,y,\,z) - {\rm O}_{3}^{'}\,(x,\,y,\,z) \,=\, 2\cdot 76\ {\rm \AA} \\ {\rm O}_{6}(x,\,y,\,z) - {\rm O}_{4}^{'}\,(x,\,y,\,z) \,=\, 2\cdot 79 \\ {\rm O}_{2}(x,\,y,\,z) - {\rm O}_{5}^{'}(x,\,y,\,z) \,=\, 2\cdot 69 \\ {\rm O}_{1}(x,\,y,\,z) - {\rm O}_{2}\,(\bar{x},\,\bar{y},\,\bar{z}) \,=\, 2\cdot 64 \\ {\rm O}_{6}(x,\,y,\,z) - {\rm O}_{4}(\,\frac{1}{2}\,+\,x,\,\frac{1}{2}\,-\,y,\,\frac{1}{2}\,+\,z) \,=\, 2\cdot 81\ {\rm \AA} \end{array}$$

Note: The parameters in brackets give the symmetry relation between the oxygen atoms and the primes refer to an oxygen atom in neighbouring unit cells (see Fig. 2).

symmetry elements. As the structure of $Al(OH)_3$ is also derived from the same ideal model, the crystal structure of H_5lO_6 is closely related to that of $Al(OH)_3$ (Megaw, 1934). In $Al(OH)_3$ two of the three oxygen octahedra are filled by aluminium. In H_5lO_6 only one of the three octahedra contains an iodine atom. The shortest distances between oxygen in neighbouring octahedra are shown in Table 2. These distances give the impression that an oxygen octahedron in a double layer is linked by three hydrogen bonds to octahedra in the same layer and by two hydrogen bonds to octahedra of adjacent layers. An attempt will be made to determine the positions of the hydrogen atoms from neutron diffraction data.

I wish to thank Dr Aafje Vos and Prof. Dr E. H. Wiebenga, University Groningen, the Netherlands, and Prof. Dr J. A. Goedkoop, Reactor Centrum Nederland, the Netherlands for their valuable suggestions and their interest in the progress of this work.

References

BEEVERS, C. A. & ROBERTSON, J. H. (1950). Acta Cryst.3, 164.CURTIS, A. R. (1959). AERE-R 3134.

GARRETT, B. S. (1954). ORNL-1745. MEGAW, H. D. (1934). Z. Kristallogr. 87, 185.

Acta Cryst. (1961). 14, 316

Lattice constants and space group of sodium tungstate dihydrate.* By Carl W. F. T. Pistorius† and W. E. Sharp, Institute of Geophysics, University of California, Los Angeles 24, California, U.S.A.

(Received 14 August 1959)

The crystallographic properties of Na₂WO₄. 2 H₂O have only been superficially investigated. Marignac (1863) found that the crystalline substance is orthorhombic bipyramidal. His goniometric measurements indicate that

$$a:b:c=0.8002:1:0.6470$$
.

Baker's Analyzed Reagent grade $Na_2WO_4.2~H_2O$ was used in the present investigation. The company's analysis is as follows: insoluble matter 0.002%; alkalinity (as Na_2CO_3) 0.08%; chloride (as Cl) 0.001%; nitrogen compounds (as N) 0.0003%; sulfate (as SO_4) 0.003%; arsenic (as As) 0.0001%; heavy metals (as Pb) 0.0002%; iron (as Fe) 0.0001% and molybdenum (as Mo) 0.0001%. The substance was used without further purification.

Under the microscope the crystals have the appearance of basal tablets, elongated parallel to a or b, with a perfect $\{001\}$, and less perfect $\{110\}$ and $\{120\}$ cleavages. The optic plane is (010); r < v strong. The refractive indices for NaD light are

$$\begin{split} n_x &= 1 \cdot 5530 \pm 0 \cdot 001, \ n_y = 1 \cdot 5535 \pm 0 \cdot 001, \\ n_z &= 1 \cdot 5650 \pm 0 \cdot 001; \ n_z - n_x = 0 \cdot 012; \\ (+)2\, V &= 26^\circ; \ X = a, \ Y = b, \ Z = c \ . \end{split}$$

- * Publication No. 202 of the Institute of Geophysics.
- † Present address: National Physical Research Laboratory, South African Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, Transvaal, Union of South Africa.

The X-ray powder diffraction pattern of finely ground $\mathrm{Na_2WO_4.2\ H_2O}$ at 25 °C. was obtained in a Norelco high angle recording diffractometer, using $\mathrm{Cu}\ K\alpha$ radiation ($\lambda = 1.5418\ \text{Å}$) and a Ni filter. The scanning speed was $1/8^\circ$ (2 θ) per min. High-purity sodium chloride was used as an internal standard.

The assignment of the peaks was made with the aid of some runs emphasizing preferred orientation, and by using the goniometric value for a:b:c. All of the observed diffraction peaks could be satisfactorily assigned as being due to an orthorhombic lattice with the following unit-cell dimensions, obtained by a least-squares treatment:

$$a_0 = 8.456 \pm 0.005$$
, $b_0 = 10.601 \pm 0.005$, $c_0 = 13.842 \pm 0.005$ Å.

The present axial ratio,

$$a_{\mathbf{0}}\!:\!b_{\mathbf{0}}\!:\!c_{\mathbf{0}}\!=\!0\!\cdot\!7978\!:\!1\!:\!2(0\!\cdot\!6530)$$
 ,

agrees reasonably well with the goniometric value (Marignac, 1863).

The calculated density of Na₂WO₄.2 H₂O at 25 °C., assuming 8 molecules per unit cell, is 3·532 g.cm.⁻³. Clarke & Davis (1877) found that the pyenometric density at 19 °C. is 3·2314 g.cm.⁻³. However, according to Zambonini (1923) this value is too low. His pyenometric measurements on carefully selected material gave a density at 15 °C. of 3·50 g.cm.⁻³, which is in fair agreement with X-ray density.

The observed and calculated d-spacings, assigned indices and observed relative intensities are listed in Table 1. The selection rules appear to be:

h0l: l = 2n

h00: h = 2n

	nuu:	n = 2n		t = 2n	
	0k0:	k = 2n	hk0:	h=2n(?)	
	00l:	l=2n	hkl:	no restrict	ion
		k = 2n	mi.	110 103(110)	1011
	0kl:	$\kappa = 2n$			
		Table 1.	Powd	er data	
$d_o(A)$		d_c (Å)		hkl	$(I/I_0) \times 100$
6.902		6.921		002	100
5.959		5.965		111	20
5.288		5.301		020	25
4.773		4.780		112	22
4.238		4.228		200	67
4.209		4.208		022	68
3.936		3.927		210	2
3.782		3.784, 3.778		113, 211	16
3.613		3.608		202	69
3.463		3.460		004	20
3.418		3.416		212	11
3.308		3.305		220	48
3.218		3.218		123	14
3.170		3.174		131	75
3.066		3.066		114	50
2.985		2.991, 2.983		213, 222	71
2.950		2.950		132	2
2.897		2.898		024	$2\overline{2}$
2.745		2.741		124	10
2.680		2.678, 2.673		204, 311	54
2.664		2.663, 2.661		133, 231	34
2.598		2.603, 2.596		041, 214	6
2.551		2.554		115	$\overset{\circ}{2}$
2.468		2.475		042	3
2.451		2.450, 2.454		321, 025	6
2.392		2.390		224	13
2.355		2.357		125	5
2.343		2.346		313	17
2.338		2.338		233	9
2.306		2.307		006	6
2.296		2.298		043	6
2.178		2.176, 2.178		331, 116	$\ddot{39}$
2.144		2.141		314	7
2.138		$2 \cdot 134, 2 \cdot 136$		234, 242	4
2.120		2.114		400	poorly 5
2.114		2.110		135	resolv. 17
2.104		2.104		044	5
2.030		2.034, 2.025		151, 206	29
1.990	1.9	86, 1.989, 1.989	4	12, 333, 216	24
1.967	- "	1.964, 1.971		420, 152	7
1.912		1.912, 1.914		341, 045	4
1.892	1.8	89, 1.891, 1.895	4	22, 413, 250	
1.883		1.884, 1.883		244, 136	4
1.878		1.878		251	32
1.861		1.860, 1.859		342, 334	2
1.854		1.851, 1.853		325,027	6
1.808	1.8	307, 1·804, 1·810	. 4	23, 404, 127	8
1.789		1.785		306	4
1.783		1.781, 1.779		343, 414	6
1.764		1.761, 1.767		316,060	15
1.745		1.744		245	11
1.724		1.724		335	14
1.710		1.708, 1.712		424, 062	12
1.697		1.695, 1.697		108, 227	5
1.692		1.691, 1.692		137, 326	3
1.682		1.682		351	19
1.675		1.678, 1.674		162, 118	21
,,,,		. 0.0, I UIT		102, 110	~ 1

Table	a 1 a	(cont.)

	Table	(cont.)	
$d_o\left(\AA ight)$	d_c (Å)	hkl	$(I/I_0) \times 100$
1.650	1.653, 1.651, 1.650	440, 155, 063	9
1.616	1.615, 1.619	128, 261	2
1.609	1.609, 1.607, 1.608	246, 434, 442	3
1.603	1.601, 1.600, 1.602,	208, 317, 425, 521	5
	1.600	, , , , , , , , , , , , , , , , , , , ,	
1.590	1.591	353	12
1.586	1.585, 1.583, 1.587,	047, 218, 262, 345	10
	1.584		
1.560	1.559, 1.558	406, 147	5
1.539	1.535, 1.537	156, 263	2
1.531	1.528, 1.533	138,228	3
1.519	1.521, 1.520	523, 504	6
1.508	1.504	514	3
1.485	1.484	247	12
1.480	1.481	346	12
1.473	$1 \cdot 475, 1 \cdot 475, 1 \cdot 472$	264, 308, 337	5
1.463	1.463, 1.461, 1.461,	452, 524, 318, 362	8
	1.463		
l·451	1.449	048	4
l·445	1.445	355	8
1.417	1.418, 1.418	271,541	7
1.404	1.405, 1.403	265,066	4
1.395	1.394, 1.396, 1.396,	229, 272, 534, 542	6
	1.396		
1.383	1.384, 1.384	166, 0, 0, 10	5
1.356	1.356, 1.356, 1.355	460, 621, 1, 1, 10	12
1.338	1.339, 1.339, 1.337,	319, 408, 437,	5
	1.337, 1.338, 1.339	613; 239; 0, 2, 10	
1.330	1.330, 1.331, 1.330	049, 266, 462	4
1.317	1.317, 1.317, 1.318,	365, 455, 544,	6
	1.316, 1.318, 1.318	551, 274, 067	
1.308	1.308, 1.308	329, 630	3
1.299	1.298, 1.299	428, 552	4
1.281	1.282	373	3
1.275	1.274, 1.274, 1.276	083, 1, 3, 10, 517	4
1.269	1.268, 1.269	447, 249	11
1.258	1.258	267	3
1.244	1.244, 1.244	640, 282	3
1.235	1.235, 1.235, 1.236,	1 19, 55 4 , 068, 1, 1, 11	1 6
1.000	1.236	451	2
1.226	1.226	471	$\frac{2}{2}$
1.218	1.218	465	5
1.203	1.203, 1.203, 1.203	349, 562, 606	4
1.1943	1.1936, 1.1947, 1.1951,	367, 381, 448,	3
1.1050	1.1936, 1.1951, 1.1943	457, 616, 259	
1.1870	1.1865	268	3
1.1751	1.1740, 1.1760	1, 3, 11; 2, 2, 11	4
1.1727	1.1721, 1.1732, 1.1729	3, 3, 10; 439, 626	5
1.1558	1.1549	376	3
1.1373	1.1367, 1.1375	0, 4, 11; 653	6

The space group is probably either $Pbcn-D_{1h}^{11}$ or $Pbca-D_{2h}^{10}$. If the very weak (210) peak is real, the space group must be $Pbca-D_{2h}^{15}$, but the possibility that this reflection is spurious cannot yet be ruled out with certainty. All of the other observed peaks are allowed in both of the above space groups.

732; 1, 4, 11

1.1278, 1.1266

1.1272

References

CLARKE, F. W. & DAVIS, J. L. (1877). Amer. J. Sci. [3], 14, 283.

Marignac, C. (1863). Ann. Chim. Phys. [3], **69**, 23. Zambonini, F. (1923). Z. Krystallogr. **58**, 266.